If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-6t-10=0
a = 3; b = -6; c = -10;
Δ = b2-4ac
Δ = -62-4·3·(-10)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{39}}{2*3}=\frac{6-2\sqrt{39}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{39}}{2*3}=\frac{6+2\sqrt{39}}{6} $
| 2(4x-5)=-10(x-8) | | 18g–-4g–20g+4g=-6 | | 3.5v=8=7.5v-4 | | 11x2=-30x-x3 | | 13m-11m=14 | | X•x•x=216 | | 5x+1=6x+3-3x | | 11x=-30x-x3 | | 9+7m=65 | | 13m–11m=14 | | 0.7(3x-5)+3.8x=14.5 | | 4(4c-12)=3(4c+16) | | 6s+s=7 | | 1x+7=8-2x | | 2r-r=19 | | 9(l=2)=3(l-2) | | 4x+11=3x-9 | | {x}{4}+9=10 | | 3^-x-4=5^-9x | | 3t^{2}+6t-24= | | -3h+-21=-18 | | 88+x=180 | | (2x+1)^2+3=21 | | 2-2(4-2x)=0 | | 5+x+x=180 | | 6.9+x+x=180 | | 5-3(x-7)=2(2-x)=-8 | | 19x+4=8x-17+5x+1 | | (2x+1)^4=16 | | 2/5×h=20 | | 41(k)=-2747 | | 41k=-2147 |